Automatic crestal sinus lift by motorised impaction device

Authors: Dr Georges Khoury & Dr Marc Revise, France

Introduction

Implant placement on the upper jaw is often confronted with insufficient bone linked to the physiological pneumatisation of the maxillary sinuses at molar sites. Sinus lift is frequent, which may or may not be linked to the contribution of biomaterials. In this clinical case we consider the use of a new automatic device: Osteo Safe® (Anthogyr). It is an instrument that facilitates axial lifting by means of a motorised handpiece, associated with straight impaction inserts or bayonets (Fig. 1).

Case report

The patient undergoing treatment is 56 years of age. He presents with hypercholesterolemia that is being treated with statins, as well as an allergy to penicillin. The treatment site in section 2 (Fig. 2) presents (Fig. 3) an additional wisdom tooth on radiological examination, ankylosed with a resorption process of its structure. No symptomatology is observed and there is no communication with the buccal environment. Its intrasinusal emergence could potentially be at risk during an extensive filling by lateral means. Owing to the crestal approach and the limited and localised increase at the apex of implants, it was decided to leave it *in situ*.

The cone beam shows a bone height of 6 mm measured at sites 26 and 27 (Figs. 4 & 5). Conventional premedication is prescribed (antibiotic therapy + corticotherapy flash + level-one anal-
gesic + mouthwash). A thick skin flap is indicated (Fig. 6). The molar sites are indexed and mechanised osteotomes of increasing diameters are used to widen the sites and the fracture of the sinusal floor (Figs. 7, 8 & 9). A biomaterial is used in order to lift the membrane by condensation (Figs. 10 & 11).

The osteotomies must not penetrate the sinusal cavity and in this case must not exceed 5 mm of insertion. This dimension corresponds to 6 mm measured initially, minus 1 mm for safety. The volume of material inserted depends on the gain that is required, namely for a gain of 4 mm, around 0.5 cc per implant site in this particular case. Implants with dimensions of 4.6/10 mm are inserted at sites 26 and 27, while maintaining the bleeding on contact with the implant (Figs. 12 & 13). Hydrophilia of the implant surface must be noted.
Postoperative effects are moderate and the pain is contained by level-one analgesics (Paracetamol); the symptoms abated within 48 hours. The X-ray controls every four months show stabilised bone volume at the apexes of the implants (Figs. 14 & 15).

The patient is then given an appointment to take impressions. Two short pop-in transfers and a closed impression holder were used, with the aim of inserting two separate crowns. A retroalveolar control X-ray was taken, although there was no doubt about the correct positioning of the transfers.

Two customised abutments (made by Simeda, Anthogyr) with a juxtagingival homothetic preparation (Fig. 16) were ordered. The prosthodontist, Christophe Gigandet, made two single ceramo-metallic crowns with non-precious metal frameworks (Fig. 19). The abutments were placed in the patient’s mouth and adjusted with strict adherence to the gingival contour (Fig. 17).

An X-ray was taken to check how well the structures had adapted (Fig. 18). The points of contact and the occlusion were examined. After filling the access cavities of the abutments, the crowns were sealed with glass ionomer cement (GC FujiCEM 2). The juxtagingival limits facilitate an easy and complete cleaning of the cement excess.

Conclusion

The Osteo Safe® mechanised procedure enables better control of the power of impacts in these crestal sinus lift indications. This system significantly reduces the learning curve as a result of the regularity of the impacts at constant power (non-operator dependent).

Contact

Dr Georges Khoury
83 Boulevard Exelmans
75016 Paris

Dr Marc Revise
3, rue Pierre Guérin
75016 Paris
DGZI INTERNATIONAL ANNUAL CONGRESS

How much aesthetic is required in the implantology?

Scientific Director:
Prof. Dr Herbert Deppe/DE
Prof. (CAI) Dr Roland Hille/DE

30 September and 1 October, 2016
Munich | The Westin Grand Munich

Only a limited number of seats and hotel capacities!

FAX REPLY | +49 341 48474-290

I would like to receive further information on the
46TH DGZI INTERNATIONAL ANNUAL CONGRESS
on 30 September and 1 October, 2016, in Munich, Germany.
For a healthy start, always use a new healing abutment

Authors: Dr Chandur Wadhwani & Steve Hurson, USA

Material in contact with the soft tissues affects the quality of the mucosal attachment. Healing of the soft tissue in the oral cavity has been under thoughtful study recently. In the article below, the authors explain the significant influence the healing abutment has on that process.

The healing cap protects the internal aspects of the implant from debris accumulations and serves as the initial transmucosal connection between the external environment and the inner parts of the human body. As a bacteriological barrier with a tight connection between the epithelium and implant component, it helps to prevent infection, crestal bone loss and soft tissue recession, all of which are crucial for long-term success.

Two-zone barrier

The soft tissue barrier that contacts the standard titanium healing abutment consists of two zones: a marginal zone consisting of junctional epithelium and a deeper apical zone comprised of a fibre-rich connective tissue. It has been shown that the properties of the material placed in contact with the soft tissues have a decisive influence on the quality of the mucosal attachment. Chemical composition and surface topography of the abutment material

Fig. 1: Healing abutment (left) was placed in an ultrasonic bath for ten minutes, then autoclaved. However, since proper cleaning was not achieved, sterilisation was not possible. A new healing abutment can be seen on the right.

Fig. 2: The screw thread may contain bio-burden after it has been removed.

Fig. 3: Debris often packs very tightly into the area of the screw head. Physical removal is often achieved at the expense of damage to the site.

Fig. 4: Repeated use of the star driver has rounded the engaging part of the screw.
play a role in tissue recession and prevention of crestal bone loss. The ability of the cells to attach and spread is dependent upon surface hydrophilicity (wettability) and “lack” of surface contamination. Although designed and labelled for single use, some clinicians advocate re-using—or “recycling”—healing abutments from one patient to the next for purely economic reasons. A breach of manufacturer guidelines, this is not a wise choice.

Five reasons why healing abutments are for single use only

1. According to Nobel Biocare guidelines, the company’s healing abutments should each only be used once. The argument against re-using a healing abutment is evident in the images above (Fig. 1). No matter the method used—steam or chemical autoclave, ultra-violet light, or ethylene oxide—sterilisation can never completely recreate the pristine surface of the original abutment.

2. Re-using a healing abutment labelled for single use may seriously degrade the performance of the product. Sterilisation with a steam autoclave, chemical autoclave, lasers or ethylene oxide may alter the composition of the titanium surface, negatively affecting cells. Physical surface topography changes the titanium wettability, which interferes with the epithelium and fibroblast cells’ ability to attach and spread. This effect is quite different from that of a new (i.e. not previously used) healing abutment.

3. New screw threads are vital for consistently favourable results. The screw thread component of the healing abutment may also contain bio-burden after it has been removed, and a screw thread is by far the most difficult part of the healing abutment to clean (Fig. 2). Although not in direct contact with healing tissue, studies have confirmed contamination and wear affect the screw thread and may result in damage within the implant. Contamination can also lead to healing abutments “locking” onto the implant. This is an extreme issue and has been known to result in the implant being reverse-torqued out of the bone in attempts to unscrew the abutment.

4. The screwdriver may not properly engage a re-used healing abutment. Very difficult-to-remove debris (Fig. 3) may clog the screwdriver insertion site. It should be noted that ultrasonic baths are not likely to get rid of this tightly packed material. Also, with repeated use, the screw head itself can become mechanically damaged. Case reports in the literature report that such damage—unnecessary if you follow the manufacturer’s single-use guidelines—makes healing abutment retrieval problematic (Fig. 4).

5. Mechanical cleaning of a previously used abutment—especially via air particle abrasion—can damage the abutment/implant connection, thus reducing its sealing capacity and altering the component connection (Figs. 5a & b). Studies have also reported abrasive impregnation into the softer titanium, resulting in metal contamination.

A potentially costly risk

Take these five points under careful consideration and you will find that the potential monetary savings of re-using a healing abutment a second time do not outweigh the known and potential health risks to the patient. In short: in order to provide patients with the greatest chance of soft tissue attachment, minimised inflammation and the prevention of possible recession—and to give the bone a healthy start—always use a clean new healing abutment!

Editorial note: Full references for this article are available online at nobelbiocare.com/news.

Contact

Nobel Biocare Services AG

P.O. Box

8058 Zürich-Flughafen

Switzerland
Introducing NucleOSS

On the purpose of improving the quality of the surgery and providing more comfortable treatments, we design, develop and present well-qualified and innovative products. We share knowledge, experiments and researches with practitioners and academicians through TFI Academy in order to lift effectiveness of ongoing R&D studies.

As NucleOSS, we embrace a well-qualified, confidential and customer-oriented production with a visible, ethical and principled management. In the light of this, we work more and more as the primary requirement of progression and development within the scope of our innovative and open-minded approach.

By means of our management perspective, which primarily values the human, we design new products, change continuously and develop.

NucleOss quality policy

The NucleOSS quality policy is formed on the purpose of collaboration of all employees for quality responsibilities, satisfaction of all sharers by meeting their demands, presenting the most excellent products and post-sale service on time with affordable prices and exceeding all expectations. This requires the main items below:

- Enhancing the life-comfort by healing the patient with disciplinary quality, technology and precise hygiene applications
- Presenting not only products, but also safety and quality by prioritising the product safety and quality constituents
- Applying all issues required by national and international laws and regulations in the whole processes
- Producing each product in the same quality any time by maintaining the effectiveness of the quality management system
- Being a pioneer company which brings innovations to the country by following the sector and technological developments
- Being a company which produces products that promotes the healing of patients and the operations for physicians with advanced technological designs

Contact

NucleOSS
NucleOSS Center
ITOB Organize Sarayı Bölgesi 10018 Sokak, No:7
Menderes, Izmir, Turkey
europe@nucleoss.com
www.nucleoss.com